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We study the transport through evanescent waves in graphene quantum dots of different geometries. The
transmission is suppressed when the leads are attached to edges of the same majority sublattice. Otherwise, the
transmission depends exponentially on the distance between leads in rectangular dots and as a power law in
circular dots. The transmission through junctions, where the transmitted and reflected currents belong to the
opposite valley as the incoming one, depends on details of the lattice structure at distances comparable to the
atomic spacing.

DOI: 10.1103/PhysRevB.78.075417 PACS number�s�: 73.20.�r, 73.21.La, 73.23.Ad

I. INTRODUCTION

Since its synthesis and identification,1,2 graphene has at-
tracted a great deal of interest because of its unusual funda-
mental properties and possible applications.3–5 Being purely
planar material and demonstrating a very high charge-carrier
mobility, graphene is considered as a perspective base for
post-silicon electronics.

The carriers in graphene are described by the massless
Dirac equation, and possess a pseudospin degree of freedom
�which is, actually, a sublattice label� and chirality related
with it. A number of unusual properties follow from this such
as, in particular, the existence of localized states at the Dirac
energy �that is, at the neutrality point� and a transport regime
dominated by evanescent waves, also at the Dirac energy6,7

�see also the experimental studies in Refs. 8 and 9�. Midgap
states with the energy close to zero �further we will count the
energy from the Dirac energy� were initially found at
graphene edges with a perfect termination in one of the two
sublattices, which define the honeycomb lattice10 �zigzag
edges�, and later they were generalized to other defects such
as cracks,11 vacancies,12 generic surfaces with a majority of
atoms of one sublattice,13 and ripples.14 These midgap states
have similar wave functions to the evanescent waves, which
mediate the transport in clean graphene when there are no
charge carriers and the chemical potential coincides with the
neutrality point.6,7 The combination of evanescent waves and
localized states can even enhance the conductivity in
graphene with defects.15,16 It can also be expected that mid-
gap states dominate the transport properties of graphene
quantum dots,17 which are the subject of intensive study as
of now.3,18–21

In the following, we extend the analysis to the transport
properties of clean graphene, with chemical potential equal
to zero,6,7 to graphene quantum dots of different geometries.
We first present the model and then we consider three differ-
ent cases: namely, rectangular dot, circular dot, and the cor-
ner between two facets representative of broad classes of
quantum dots. In particular, we will demonstrate that for the
case of circular dot the conductance is very sensitive to mag-
netic field, which may give an insight for development a
different type of magnetic sensors. The main conclusions can
be found in the last section.

II. MODEL

We will consider ballistic quantum dots etched from a
single layer graphene flake, connected by graphene leads. We
assume that the chemical potential in the external reservoirs
and the leads is far from the Dirac energy while a gate fixes
the chemical potential of the quantum dot at the Dirac en-
ergy, �=0. As there are no extended states at �=0 in the
quantum dot, transport processes take place through evanes-
cent waves induced by the contacts. This combination of
chemical potentials is similar to that considered in Refs. 6
and 7 for the case of bulk graphene.

We assume that the leads have a width l. We also assume
in the following that the carrier concentration in the dots is
high6,7 so that kFLl�1, where kFL is the Fermi wavelength in
the leads. The transmission through the constriction induces
changes in the momentum parallel to the interface, ky, of
order �ky � l−1. As discussed below, the transmission
through the dot is determined by evanescent waves with de-
cay length �−1� l. The allowed parallel momentum of these
modes is ky ��� l−1. Hence, the relevant incoming modes in
the leads also must have ky =kFL sin���� l−1. The relevant
states in the leads are focused in the forward direction, �
�1 / �kFLl�. Within these approximations, the incoming and
outgoing waves can be written as

	i�xi� � �	Ai�xi�
	Bi�xi�

� = � 1


1
	e
ikFLxi, �1�

where x is the coordinate along the axis of the lead, the index
i=in,out defines the incoming and outgoing leads, A and B
label the two sublattices in graphene, and the two signs cor-
respond to waves moving in opposite directions. The states
in Eq. �1� are the same as those used in Refs. 6 and 7. In the
following, we will neglect intervalley scattering in the dot so
that the transmission through the dot can be analyzed for
each valley separately.

The wave function in the incoming and outgoing leads
near the contacts to the dot, xi=0, can be written as

	in�0� � �1 + R

1 − R
	 ,
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	out�0� � �T

T
	 , �2�

where R and T are the reflection and transmission ampli-
tudes, and the carriers in the leads are supposed to be elec-
trons ���0�.

We assume that surface states exist at the edges of the dot.
This is the general case as these states always exist when the
two sublattices of the honeycomb structure are not compen-
sated at the edge.13 The existence of these states leads to a
depletion of the density of extended states for energies 
�

�vF /L, where L is a typical dimension of the dot. Hence,
within this range of energies, we need only consider the mid-
gap states within the dot. Defining the complex variable z
=x+ iy, where x and y are Cartesian coordinates, the wave
function of the states with zero energy must be of the form:6

	K�x,y� � �	K
A�x,y�

	K
B�x,y�

� � � fK�z�
gK�z̄� � ,

	K��x,y� � �	K�
A �x,y�

	K�
B �x,y� � � � fK��z̄�

gK��z� � , �3�

where fK, gK, fK�, and gK� are analytical functions, and K and
K� label the two inequivalent valleys in graphene. In the
following, we will consider only one valley. The results can
be extended to the other valley in a straightforward way. For
the study of the two cases shown in Fig. 1, we neglect pro-
cesses that lead to the hybridization of the two valleys. Note
that we are considering ballistic systems where intervalley
scattering can be neglected. A different situation is that of a
60° edge where intervalley scattering is crucial even in the
ballistic limit.

III. RESULTS

A. Rectangular dot

We first consider a rectangular dot determined by its
length L and width W, as sketched in Fig. 1�a�. Each of the
leads can be connected to an edge terminated in the A sub-
lattice and the other can be connected to an edge terminated
in the B sublattice.

For simplicity, we assume periodic boundary conditions
along the vertical direction, as in Ref. 6. For a graphene
ribbon of width W�a, the solutions for open boundary con-

ditions can be written as superpositions of waves with oppo-
site momenta, which are possible solutions of an equivalent
problem with periodic boundary conditions. The difference
between the two choices for a ribbon with N unit cells of
length a lies in the set of allowed momenta, k�=n / ��N
+1�a� ,n=1, ¯ ,N, for periodic boundary conditions and
k�= 
2n / �Na� ,n=0, ¯ ,N /2. If the transmissions to be
calculated are a smooth function of the momentum k�, the
results obtained using either choice of boundary conditions
converge to the same value for N�1.

For the rectangular dot considered here, the x coordinate
lies within the range −L /2�x�L /2 and the y coordinate
can be written as y=W�� / �2� with 0���2. The wave
functions inside the dot can be expanded using the basis:

	�x,y� � 
n=−�

�

an�e2nz/W

0
	 + bn� 0

e2nz̄/W 	 . �4�

The incoming lead is attached at the position z1=−L /2 and
the outgoing lead is attached to the position z2=L /2+ iW
��0 / �2�. The contact averages out the details of the wave
functions in the dot over a length of order l. Hence, the
description of the effects of the contact does not require the
infinite sum in Eq. �4�. In the following, we include an upper
cutoff, nmax�W / l. The boundary conditions at z1 and z2 are:

1 + R = 
n=−nmax

nmax

ane2nz1/W = 
n=−nmax

nmax

ane−nL/W,

1 − R = 
n=−nmax

nmax

bne2nz̄1/W = 
n=−nmax

nmax

bne−nL/W,

T = 
n=−nn max

nn max

ane2nz2/W = 
n=−nmax

nmax

anenL/Wein�0,

T = 
n=−nmax

nmax

bne2nz̄2/W = 
n=−nmax

nmax

bnenL/We−in�0. �5�

The zigzag boundary conditions at points at the edge with
x=−L /2 other than the position of the lead, �=0, and at the
edge with x=L /2 for ���0 read


n=−nmax

nmax

bne−nL/We−in� = 0 � � 0,

A

r

R
l

A

B

W
l

L

A B

a) b) c)

A

B

B

FIG. 1. �Color online� Sketch of the geom-
etries of a graphene quantum dot analyzed in the
paper. �a� Rectangular dot. �b� Ring-shaped dot.
�c� 60° edge.
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n=−nmax

nmax

anenL/Wein� = 0 � � �0. �6�

An Ansatz that is compatible with the two sets of boundary
conditions is

an = Te−nL/We−in�0,

bn = �1 − R�enL/W, �7�

which leads to the equations

1 + R = T 
n=−nmax

nmax

e−2nL/We−in�0,

1 − R = T� 
n=−nmax

nmax

e2nL/W�−1

, �8�

and

T =
2

n=−nmax

nmax e−2nL/We−in�0 + �n=−nmax

nmax e2nL/W�−1 . �9�

The sums in Eq. �9� are dominated by the terms with n
� 
nmax. Hence, we obtain


T
2 � e−4�L/W��W/l�. �10�

Finally, when the two contacts are attached to the same type
of zigzag edge, the boundary conditions lead to either an
=0 �contacts attached to an A terminated edge� or bn=0 �for
a B terminated edge�, and, as a result, R=1 and T=0.

The assumption of a rectangular shape implies that the top
and bottom boundaries may be of the armchair type, leading
to intervalley mixing.22 These boundaries are separated by a
length W� l. The valley mixing induces a change in the al-
lowed values of the transverse momentum, ky, with respect
to the case of zigzag boundary conditions. The momentum
shift is22 �ky �W−1. An incoming valley polarized mode can
be written as a superposition of exact eigenmodes in the
presence of valley mixing at the boundaries with a spread in
momentum of order �ky � l−1.

As discussed above, the transmission through the dot is
determined by evanescent waves with decay length �−1� l.
The parallel momentum associated to these states is ky ��
� l−1. This superposition of valley polarized states will be
changed by the existence of valley mixing at the top and
bottom boundaries. The effects are of order e−��L�e−L/W,
which are exponentially smaller than the transmission coef-
ficient obtained above, 
T
�e−4L/l.

The previous analysis can be extended to a rectangular
graphene quantum dot in a constant magnetic field. The wave
functions in Eq. �4� in this case become

	�x,y� � 
n=−nmax

nmax

an�e2in/We−x2/�2lB
2 �

0
� + bn� 0

e2in/Wex2/�2lB
2 � � ,

�11�

where lB=��c
e
B is the magnetic length and B is the mag-
netic induction. The same manipulations described above al-

low us to calculate the transmission coefficient, which turns
out to be unchanged with respect to Eq. �10�. The lack of
dependence of the transmission on the applied field is in
agreement with the insensitivity of the bulk transport to the
magnetic field when the chemical potential is at the Dirac
point.23

B. Circular dot

We now consider a ring-shaped dot with the contacts at-
tached to the inner and outer edges, which are assumed to be
A and B terminated, respectively.17 As discussed there, a
graphene dot with an approximate circular shape can be
bounded by different edges where the majority sublattice is
of either type. The advantage of assuming the same boundary
conditions throughout the edge is that the problem retains
circular symmetry and the solutions have a well defined an-
gular momentum, l, in which l=1, ¯ lmax�R /a, where R is
the radius of the dot and a is the lattice constant. For R /a
�1, superpositions of wave functions with l�1 can be built
with a small spread in angles, 	�r ,���0, only if �0−��
����0+�� with ���2. These states are solutions of the
Dirac equation at zero energy that are not affected by the
global properties of the boundaries of the dot. Hence, they
can be used to describe transport between positions at the dot
edges that are close enough so as to be insensitive to the
global properties of the edges. The case when the transport
properties are influenced by the type of edges requires input
about features at distances comparable to the lattice spacing
and will be considered in the next subsection.

The outer and inner radii are R1 and R2, as shown in Fig.
1�b�. The modes at �=0 inside the dot that satisfy the bound-
ary conditions can be obtained by a conformal transforma-
tion, which changes the rectangular �cylindrical� dot consid-
ered in the previous subsection into a ring. This
transformation is

w�z� = �R1R2e2iz/W, �12�

and e2L/W=R1 /R2. Using this transformation, the wave
functions in Eq. �4� become

	�x,y� � 
n=−�

�

an�zn

0
	 + bn� 0

z̄n 	 . �13�

The size of the contact, l, induces a maximum value n,
nmax�2R2 / l. From the wave functions in Eq. �13� and us-
ing the same analysis as for the rectangular dot in the previ-
ous subsection, we wind, in analogy with Eq. �10�,


T
2 � �R2

R1
	8R2/l

. �14�

If we write 2R2=W and R1�R2+L, this expression reduces
to Eq. �10� when R1�R2�R1−R2.

As in the case of the rectangular dot, the only allowed
solution when the two contacts are attached to the same
boundary is R=1 and T=0.

Dots of different shapes can be obtained using other con-
formal transformations. For instance, the circular dot ana-
lyzed here can be turned into a dot with a corrugated bound-
ary using the mapping

TRANSPORT THROUGH EVANESCENT WAVES IN… PHYSICAL REVIEW B 78, 075417 �2008�

075417-3



w��w� = w + �wm, �15�

where m fixes the period of the corrugation and ���R /Rm

gives its amplitude. The transmission coefficient in Eq. �14�
acquires corrections of order �R / l���R /R�m.

This analysis can also be extended to a finite magnetic
field. In that case the wave functions are

	�x,y� � 
n=−nmax

nmax

an�zne−r2/�2lB
2 �

0
� + bn� 0

z̄ner2/�2lB
2 � � .

�16�

The boundary conditions imply

1 + R = e−R1
2/�2lB

2 � 
n=−nmax

nmax

anR1
n,

1 − R = eR1
2/�2lB

2 � 
n=−nmax

nmax

bnR1
n,

T = e−R2
2/�2lB

2 � 
n=−nmax

nmax

anR2
nein�0,

T = eR2
2/�2lB

2 � 
n=−nmax

nmax

bnR2
ne−in�0. �17�

A possible solution is of the form

bn =
C

R2
nein�0,

an =
A

R1
n , �18�

leading to the equations

1 + R = Ae−R1
2/�2lB

2 �nmax,

1 − R = CeR1
2/�2lB

2 ��R1

R2
	nmax

,

T = Ae−R2
2/�2lB

2 ��R2

R1
	nmax

e−inmax�0,

T = CeR2
2/�2lB

2 �nmax. �19�

Thus, the transmission coefficient is


T
2 = nmax
2 �R2

R1
	2nmax

e−�R1
2−R2

2�/lB
2

= nmax
2 �R2

R1
	2nmax

e−�/�0,

�20�

where � is the magnetic flux per ring and �0=�c / 
e
 is the
flux quantum. The dependence of transport through the quan-
tum dot on the magnetic field is exponential rather than os-
cillatory as in case of the standard Aharonov-Bohm effect,24

which reflects specifics of transport via evanescent waves.
Thus, the conductance of circular quantum dot turns out

to be very sensitive to the flux through the ring. This can be
potentially interesting in light of development of magnetic
sensors for measurements of very low fields without use of
superconductivity.

C. Corner between two facets

We finally consider a 60° angle boundary between an
edge with A termination and an edge with B termination, as
sketched in Fig. 1�c�. The leads are attached at distances l1
and l2 from the corner. The transmission along a ribbon with
this geometry has been analyzed numerically in Refs. 25–27.
A full solution cannot be obtained within the continuum ap-
proximation, as in the previous cases, since both transmis-
sion and reflection at the wedge require Umklapp processes,
changing the valley index of the incoming electron. In this
respect, the problem is similar to that of the transmission
across a p-n junction near the Dirac point.28

We consider the ribbon with an angle shown in Fig. 2.
The system has reflection symmetry around an axis that con-
nects the vortices of the angles at both sides. Far away from
the corner, the system reduces to a zigzag ribbon. We assume
that the edges of the ribbon are at y= 
W /2 and W�a,
where a is the lattice constant. The wave function of an
incoming wave can be written as

A,K

1 T2

B,K’
B,K’A,K’

A,K’

B,K

T

FIG. 2. �Color online� Sketch of the 60° junction analyzed in the
text. Top left: an incoming wave from the left, built up from eigen-
states in the vicinity of the K valley, has to be either transmitted or
reflected as a superposition of states from the K� valley. Bottom:
Scheme used to analyze the transmission in the honeycomb lattice.
The junction has a reflection symmetry around its center, shown as
dashed line. On each side, the nearest-neighbor hopping problem
can be written as a sum of coupling between nearest-neighbor trans-
verse stripes. See text for details.
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	K
in�x,y� � � sinh���y −

W

2
	�

−�k + �

k − �
e��y−W/2� +�k − �

k + �
e��W/2−y� �eikx,

�21�

where � and the energy of the state are given by

� = k tanh��W� ,

�k = vF
�k2 − �2. �22�

For kW�1, we find

� � k�1 − e−2kW + ¯� ,

�k � vFke−kW. �23�

The solution �Eq. �21�� is valid for k�W−1.
The reflected and transmitted waves can be written as in

Eq. �21� except that, for the reflected wave, the momentum is
reversed and the wave packet is built up from electrons at the
K� valley:

	K�
ref�x,y� � � sinh���y −

W

2
	�

−�k + �

k − �
e��y−W/2� +�k − �

k + �
e��W/2−y� �e−ikx.

�24�

This wave function has to be matched to that in Eq. �21� at
the interface. In the continuum limit, the overlap between
wave functions at K and K� valleys is zero, and the matching
cannot be carried out. We analyze the corrections induced by
the finite lattice by dividing each ribbon reaching the junc-
tion into stripes, as sketched in Fig. 2. Using a nearest-
neighbor tight-binding model, each one-dimensional ribbon
is coupled to its two nearest neighbors and the Hamiltonian
can be written as a sum of N�N terms, T1 and T2, where N
is the number of atoms within each ribbon:

�k�i
M = 

j=1

N

Tij
1 � j

M + Tij
2 � j

M+1 i = 1, ¯ ,N ,

�k�i
M = 

j=1

N

Tij
1 � j

M + Tij
2 � j

M−1 i = 1, ¯ ,N , �25�

where M is a stripe index.
Using the inversion symmetry of the junction, we can

analyze separately states that are even and odd with respect
to the axis, which joins the two angles of the junction. Within
each subsector, the problem is reduced to the reflection of an
incoming wave of energy �k at a sharp boundary at the loca-
tion of the junction. The coupling between the stripes at each
side of the junction becomes, in the created geometry, an
energy shift equal to the hopping t at the atoms in the last
stripe of the system:

�k�i
0 = 
 t�i

0 + 
j=1

N

Tij
1 � j

0 i = 1, ¯ ,N . �26�

An incoming wave of momentum k and energy �k defines a
set of coefficients, ��i

k� , ��i
k�, such that the Ansatz,

�i
M = �i

keikM ,

�i
M = �i

keikM , �27�

is a solution of Eq. �25�. In the limit N�1 and �k� t, these
amplitudes are well approximated by Eq. �21�. For a given
energy �k� te−N, we can define only one incoming and out-
going set of amplitudes, as in Eq. �27�. We can also define
N−1 amplitudes ��i

�� , ��i
�� such that

�i
M = �i

ke−�M ,

�i
M = �i

ke−�M , �28�

satisfy Eq. �25�. For energies very near the Dirac point, the
solutions �27� and �28� are such that either the amplitudes
�i

k ,�i
� or � j

k ,� j
� are exponentially small when Ti,j

1 ,Tij
2 �0.

The boundary condition at the edge of the system is given
by Eq. �26� where the amplitudes can be expanded into an
incoming, a reflected, and M1 evanescent waves:

�i
0 = �i

k + R�i
−k + 

�

C��i
�,

�i
0 = �i

k + R�i
−k + 

�

C��i
�. �29�

The insertion of these expressions into Eq. �26� leads to N
equations with the N−1 unknowns �C�� and the reflection
coefficient R. The even and odd combinations of the initial
junction problem allows us to define the reflection coeffi-
cients R
, obtained using the two possible signs in Eq. �26�.
It is easy to show that the transmission coefficient of the
junction can be written as T= �R+−R−� /2.

The only solution of Eq. �26� at low energies requires all
the amplitudes �i

0 to be exponentially small as a finite set of
values �i

0 and � j
0 are incompatible if Tij

1 �0. Hence, the pa-
rameters C�


 and R
 are determined by a set of equations,
which are independent of the choice of sign in Eq. �26�, so
that R+�R− with exponential accuracy. Hence, the transmis-
sion coefficient of the original junction also vanishes with
exponential accuracy, in agreement with the numerical cal-
culations in Refs. 25 and 26.

Results are shown in Fig. 3. They are consistent with
those reported in Ref. 27. The dependence on energy of the
reflection coefficient shows three characteristic patterns,
which are repeated as function of the width of the junction,
as shown in the figure. This approximate periodicity is remi-
niscent of the alternance of metallic and nonmetallic features
in carbon nanotubes and graphene nanoribbons.

The calculation described here requires the existence of
evanescent waves that have a finite overlap with wave pack-
ets derived from both the K and K� points of the Brillouin
zone, in a similar way to the transmission problem analyzed
in Ref. 28. The coupling between the two valleys can be
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analyzed in detail by calculating the relative weights of the
different evanescent waves that must be defined at the junc-
tion. Results for a junction of width N=16 are shown in Fig.
4 where the decay length is defined as lev=1 /� in Eq. �28�.
Most of the weight is concentrated on evanescent waves with
a short decay length, which cannot be ascribed to a given
valley.

IV. CONCLUSIONS

We have studied the transmission, at zero energy, through
graphene quantum dots attached to leads with incoming and
outgoing channels, extending the analysis in Refs. 6 and 7.
We assume that, for energies at distances to the Dirac point
smaller than vF /L where L is the typical dimension of the
system, extended states can be neglected and the electronic
properties are mainly determined by evanescent waves or by
localized states induced by boundaries.

We have shown that the dots of various shapes can be
analyzed using conformal transformations that preserve the
nature of the states at zero energy. An exception is an angle

between zigzag boundaries with different terminations where
the solution of the problem requires the analysis of evanes-
cent waves that do not have a well defined valley index and
cannot be described by the continuum Dirac equation.

We find that: �i� The transmission vanishes when the leads
are attached to the same edge. �ii� The transmission depends
exponentially on the ratio between the size of the dot and the
width of the contact. �iii� The shape of the dot changes sig-
nificantly the transmission. �iv� The effects of a magnetic
field are strongly dependent on the shape of the dot. A rect-
angular dot is unique in that a magnetic field does not change
the transport properties �see also Ref. 23�. In general, the
conduction of the dot is very sensitive to the magnetic flux
through it. A similar behavior for dots in the diffusive regime
has been reported in Ref. 29. �v� The transmission, when the
two contacts are attached to an edge such that both the trans-
mitted and reflected waves belong to the opposite valley as
the incoming wave, depends on the lattice structure at short
distances.
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